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This report addresses the environmental impacts of high-performance computing (HPC), particu-
larly its significant energy consumption and carbon emissions driven by artificial intelligence (AI) and
data center operations. The study develops models to evaluate these impacts under different energy
mixes by 2030, incorporating additional environmental factors. Key assumptions include the accuracy
of data projections, global consistency in energy costs, and stability in energy production unaffected
by climate variability or extreme events.

Our team created three interconnected models to analyze the problem. The Energy Suitability
Model evaluates energy sources across a wide variety of geographies, factoring in dispatchability,
availability, variability, predictability, and safety risks. Subsequently, a score is computed and further
transformed to act as an electricity cost multiplier for final calculations. The Electricity Model estimates
energy consumption proportions by source for data centers, using 2022 and 2030 trends, and predicts
exponential growth in HPC energy demands. The Carbon Emissions Model computes emissions by
energy type and quantifies their societal impacts using two social cost standards: $51/ton and $190/ton.
Combined, these models provide insights into the environmental and economic costs from HPC energy
consumption.

Key findings indicate that global HPC carbon emissions are projected to rise from 244 Mt in 2022
to 1175 Mt by 2030. Energy costs are expected to increase from $62.13 billion to $324.90 billion (or
$445.90 billion under EPA standards). Geothermal energy is identified as an ideal fit for data centers
due to its dispatchability, reliability, and consistency across temporal scales. However, it remains
difficult to adequately implement geothermal energy into all settings, as the power source is restricted
to select geological settings requiring high geothermal gradients and available subterranean fluids.
However, with new technological breakthroughs such as hot dry rock technology, super-deep drilling,
and enhanced geothermal systems, we remain optimistic about its potential.

The report’s strengths lie in its clear parameters, comprehensive consideration of energy sources,
and integration of regional variability. However, weaknesses include simplified assumptions about
future AI trends and limited consideration of complex societal and economic factors. In conclusion,
adopting sustainable energy sources such as geothermal energy could significantly reduce global carbon
emissions and energy costs. The findings underscore the critical need to integrate environmental and
energy sustainability into AI policymaking to ensure a balance between technological advancement
and ecological preservation.
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1 Introduction

1.1 Background
As an emerging technology, high-powered computing can change the social and cultural landscape
for decades to come. Much repetitive and menial labour can be replaced or assisted mainly by artificial
intelligence, saving time and cutting capital costs of projects for private and public sectors. There
are, however, no free lunches when it comes to benefits offered by AI. According to the laws of
thermodynamics, energy has to be used as an input for any meaningful work to be done. While AI
largely displaces the metabolic energy usage of humans in the form of food, it nevertheless consumes
other forms of energy, primarily electricity from utility-scale power generation.

In particular, energy consumption from data centers alone accounts for roughly 1 to 1.5% of global
electricity use [3]. AI and cryptocurrency mining comprise a large proportion of data center electrical
consumption. Due to its sizable energy intake, high-powered computing contributes to carbon emissions
and, subsequently, climate change and its myriad of negative impacts. It is, therefore, paramount to
calculate the monetary costs stemming from electricity consumption and carbon emissions to weigh
against the value added by AI. This paper explores the costs of high-powered computing using different
energy mixes and standardized using a 2022 value of 460 TWh [3] and a 2030 predicted value of
2000 TWh. The energy mixes are computed using existing geographies, with a suitability-adjusted
coefficient multiplied by the electrical costs to account for local differences. Ultimately, the model’s
strength comes from its configurable parameters, unlike many black box models that are more opaque
with the output.

1.2 Problem Restatement
The end goal of this report is to determine the carbon emissions of high-powered computing using
different energy mixes projected into 2030, with the following steps:

1. Develop a model to determine the environmental impact of total carbon emissions resulting from
energy consumption of High-Powered Computing (HPC), using different energy mixes from a
varied proportion of energy sources.

2. Use the model to reconstruct for future changes with the growth of HPC and the increasing
demand for energy in other sectors, specifically in 2030. Investigate the effects of increased and
complete renewable energy usage on carbon emissions, as well as potential challenges.

3. Refine the model to account for another environmental aspect of HPC.

4. Write a letter to UN Advisory Board addressing the environmental impacts of HPC using our
findings to support recommendations.
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2 Variables and Assumptions

2.1 Variables

Subscripts (x)

Symbol Definition Symbol Definition

𝐹 Fossil fuels (oil, gas, coal) 𝑤 Wind
𝑔 Natural Gas 𝑠 Solar
𝑐 Coal 𝑔𝑡 Geothermal
𝑝 Oil 𝑛𝑐 Nuclear
𝑅 Sources excluding fossil fuels 𝑏𝑚 Biomass
ℎ Hydroelectric 𝑡𝑜𝑡𝑎𝑙 All sources

Table 1: Subscripts for x (energy source)

The above table lists out all major sources of energy. For convenience, fossil fuels are grouped into
gas, solid, and liquid forms of hydrocarbons as natural gas, coal, and oil. All other sources are grouped
together (regardless of whether renewable) including nuclear, as 𝑅. Tidal’s contribution in the energy
mix is minuscule and grouped with hydro for convenience. Geothermal excludes energy from heating
and cooling and only accounts for electricity. Biomass is an all-encompassing category with a very
diverse set of combustible material.

The locations below are selected based on relevance, interest and curiosity. Energy mixes were
found globally for 2022 and 2030 as a part of the requirement, and USA for its dominance in the AI
sector. For 2030, Canada, China, and India were used for their unique geographies and development,
as well as their varied energy mixes. 2030 projections of the energy sector was difficult to find for
Iceland and Germany, but were kept for interest due to anomalous energy policies, especially Iceland.
Idealland featured data systems powered only using geothermal, with ”ideal” conditions such as no
solar or wind variability (perhaps possible on a axial tilt similar to Uranus) for suitability calculations.

Location Index

Number Location Number Location

1 2022 Global 8 2020 Iceland
2 2022 USA 9 2030 India
3 2030 Global 10 2022 Germany
4 2030 USA 11 Moon
5 2030 Canada 12 Mars
6 2030 China 13 Io
7 2030 Idealland 14 Titan

Table 2: Subscripts for y (locations)
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Other solar system objects were also used out of curiosity to test the generalizeability of the suitability
matrix. Further information about the selection process is described in section 4.1.

Variables and Derived Calculations

Symbol Denotation

𝐸𝑃𝑥 Annual electrical production (TWh)
𝑝𝑥 Proportion of electrical use by source
𝐸𝑥 Electricity usage of data centers by source (TWh)
𝐸𝑦𝑒𝑎𝑟 Electricity usage of data centers by year (TWh)
CO2𝑥 Annual carbon emissions by data centers by source (g)
CO2𝑡𝑜𝑡𝑎𝑙𝑀𝑡 Total annual carbon emissions by data centers in Megatons
𝐶𝐶𝐴 Annual social costs of carbon emissions using estimate A (billions USD)
𝐶𝐶𝐵 Annual social costs of carbon emissions using estimate B (billions USD)
𝐸𝐶𝑥 Annual electricity costs of data centers by source (USD)
𝐸𝐶𝐵𝑖𝑙 Total annual electricity costs of data centers (billions USD)
𝑇𝐶𝐴 Combined annual costs of data centers using estimate B (billions USD)
𝑇𝐶𝐵 Combined annual costs of data centers using estimate B (billions USD)
𝑧𝑥,𝑦 Suitability score of resource x by location y
𝑍𝑥,𝑦 Adjusted suitability coefficient
𝑍𝐶𝑜𝑠𝑡𝑥 Adjusted annual electricity costs based on geography by source (billions USD)
𝑍𝑛𝑜𝑟𝑚 Normalized total adjusted annual electricity costs of data centers (billions USD)
𝑘 Normalization factor
𝐹𝐶𝐴 Final annual adjusted cost of data centers using estimate A (billions USD)
𝐹𝐶𝐵 Final annual adjusted cost of data centers using estimate B (billions USD)

Table 3: Variables used

2.2 Assumptions
1. Data used is accurate and projections will continue as expected into 2030.

Justification: Data is generally extracted from reputable sources (IEA projections, government
statistics, peer-reviewed research, etc.), and point values are used instead of distributions. Some
input requires subjective judgment and can only be used as reference values. These considerations
are always explained in this report and are highly adjustable in the model for expert fine-tuning.
Projections into 2030 follow sources such as the International Energy Agency and are the best
available estimates. However, as humans, we are epistemically limited from absolute future
knowledge. Extreme outlier events or unexpected feedback due to the butterfly effect can cause
forecasts to stray from expectations. It is, therefore, paramount to note this limitation in our (and
any) predictive models.

2. The cost is consistent globally for each energy source.
Justification: Adjusting the energy source costs for each country or locality will add another
dimension to our model and further complicate calculations. The important consideration is the
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energy mix and proportion of each energy source used rather than specific costs per megawatt
hour for local variability. Also, using distributions for energy costs will introduce stochastic and
probabilistic calculations, which are beyond our abilities and time restraints.

3. Availability of each energy source does not change from 2022 to 2030.
Justification: It is possible that the effects of petroleum depletion will be felt somewhat by 2030,
or catastrophic events such as a Hormuz blockade will occur. It is also possible for Yellowstone
to erupt or nuclear warfare to break out and cause a volcanic/nuclear winter, essentially disabling
solar radiation on the surface of Earth. Scenarios like this are left out of our model due to their
unforeseeability and the drastic effects that are difficult to predict. These events can be mentioned
as thought exercises but are impractical to implement for our purposes.

4. Energy production remains unaffected by climate variations.
Justification: El Niño–Southern Oscillation and other climate fluctuations such as the Atlantic
multidecadal oscillation, Pacific decadal oscillation, and Indian Ocean Dipole may cause en-
ergy variability in output for solar, wind, and hydroelectric energy sources. Additionally,
anthropogenic climate impacts may further trigger events such as AMOC collapse and Sa-
hara/Taklamakan greening. These reversals to previous climate regimes feature tipping points
that are difficult to pinpoint, affecting biomass, solar, wind, and hydro resource availability.
Introducing these factors will make the model overly complicated for our purposes.

5. Price for each energy source remains constant from 2022 to 2030.
Justification: Policy shifts, warfare, technological developments and natural disasters, the main
factors causing energy price fluctuations in our model, are excluded from this report due to their
complex and random nature. They cannot be adequately accounted for in our (or most) model(s)
and are only briefly mentioned here.

6. Any other energy sources not considered amount to negligible values.
Justification: Some energy categories, such as marine energy (tidal and currents), are not
considered due to negligible generation in most geographies. Excluding them from the model
does not affect calculations in any significant amount.

7. Artificial Intelligence development does not encounter discontinuous breakthroughs and
progress, and grows exponentially.
Justification: Events such as AI singularity, hostile AI takeover, accidental alien contact, coming
of the Messiah, etc., are not considered for AI development, which is assumed to be exponential
with no discontinuities. While possible, they are beyond the scope of this report.

8. Cryptocurrency mining grows exponentially.
Justification: We assumed that the growth of the cryptocurrency mining industry would be
exponential, similar to AI, to avoid overcomplicating our model. This assumption is crucial for
maintaining the simplicity and accuracy of our model.
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3 Data and Methodology
For the grams of carbon emission per kilowatt-hour estimates, the following sources were used for
coal and biomass [10], natural gas [14], solar and nuclear [7], wind [15], hydro [11], and geothermal
[6]. For carbon emissions with a range of values, the median is used as the distribution tends to be
skewed. CO2𝑡𝑥 is computed in grams per terawatt-hours for multiplication convenience. Levelized
cost of electricity (LCOE) values are sourced from EIA [2], and LFSCOE values are sourced from
[9]. The conservative values of Texas were used in favor of Germany due to its relative climatic
representativeness for global wind and solar storage needs. Levelized full system costs of electricity
(LFSCOE) consider costs such as storage in addition to energy production. The average utilization rates
are only used for reference since LCOE values already account for capacity factors in the calculation.
The energy cost ranges (USD per MWh) are compiled from multiple sources, and a final estimate value
is used based on the median of which and subjective estimates.

g CO2/KWh Average value g/TWh (CO2_tx) Average utilization rates
Coal 1040 1040 1040000000000 55%
Gas 560 560 560000000000 87%
Oil 915 915 915000000000 -
Hydro 6 6 6000000000 54%
Wind 5-8 7 7000000000 41%
Solar 10-50 30 30000000000 29%
Geothermal 35 35 35000000000 90%
Nuclear 4-100 (12) 12 12000000000 90%
Biomass 49 49 49000000000 83%

Total LCOE Total LFSCOE Energy cost range Final estimates (LFSCOE_x)
Coal 117.27 70-145 90
Gas 39.94 35-45 40
Oil - 105
Hydro 64.27 35-130 65
Wind 40.23 291 225-600 300
Solar 36.49 413 200-1500 400
Geothermal 39.82 35-100 45
Nuclear 88.24 122 80-140 120
Biomass 90.17 117 90-130 115

($/MWh) ($/MWh) ($/MWh) ($/MWh)

Figure 1: Data parameters used
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Some things to note here: Solar and wind are usually quite cheap to produce, but due to irregularities
in time, their cost is heavily increased with storage considerations. Geothermal power is theoretically
inexpensive to produce, but the value is inflated (or deflated) by existing power plants only built on sites
with high geothermal gradients and suitable geological conditions, which is a form of survivorship
bias. Hydro should technically be cheaper, but the scale of the engineering projects inflates costs
significantly.

The values 𝐸2022 and 𝐸2030 (annual electricity usage from data centers) are estimated to be 460
TWh and 2000 TWh, based on a model of exponential growth using data from [3]. Data centers from
AI used about 340 TWh while cryptocurrency mining accounted for the rest of 120 TWh. These key
values will be used in most later calculations, which makes them critical assumptions.

 



Page 7

4 Model Design

Figure 2: Flowchart for calculations used in the model

4.1 Country selection
We selected the US, Canada, China, Iceland, Germany and India to model electricity usage and
the subsequent cost of data centers. We chose the US and China specifically for their government-
subsidized high-powered computing (HPC) investments. We aim to create an all-encompassing model
accommodating most geographical, infrastructural, and economic scenarios. In the process, we created
Idealland as a control with ideal energy generation. Assuming perfect conditions where the sun shines,
the wind blows with no variability or downtime, and geothermal is available in all locations with
equally high resources, Idealland relies purely on geothermal to supply its data center energy needs.
This is in consideration of the fact that geothermal energy is the most ideal for data centers using
our suitability matrix. Iceland was another wildcard; the scale of its energy generation, aside from
geothermal and hydroelectric, was minimal. Adding in Iceland provides a real-life example of nearly
100% renewable energy use. The rationale behind choosing India is that they are one of the fastest
growing digital economies. We used the 2030 projection of India’s energy mix to compare and contrast
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with Western development [13]. Canada was one of our options because of its green energy policies.
Canadian society is especially pushing for a greener energy sector, with its geographic location also
offering many types of renewable energy generation. Hydroelectricity is dominant, generating around
60% of Canada’s power, but the country also features a different energy mix from Iceland [8]. Lastly,
we included global averages and the global projection for 2030.

4.2 Energy Mixes and Suitability Model
Before creating our model, we needed to create multiple suitability matrices corresponding to each
country. A suitability factor is important because it adds a dimension to the model, accounting for
geographical variability in resource availability and variability.

4.2.1 Dispatchability

Dispatchability measures how easy it is to scale (ramp up or down) the resource production within
a short time frame. For example, hydroelectric power plants can dispatch quickly by allowing more
water flow in response to demand, but photovoltaics can only generate power proportional to the solar
irradiance levels. The dispatchability rating ranges from 0 to 3, with zero being non-dispatchable and
three having short dispatching times. Dispatchability is constant for each location.

4.2.2 Geographic Availability

Geographic availability measures the country’s accessibility to a resource and is therefore variable
by location. For example, solar energy is more suited to areas with low cloud cover and high solar
irradiance, while geothermal energy is limited by the temperature gradients and presence of pressurized
underground steam. The availability rating could also indicate resource abundance, such as the amount
of oil in a region. The Geographic availability rating ranges from 0 to 3, with a three being the
most accessible. For non-terrestrial environments, we used much larger values to highlight availability
contrasts.

4.2.3 Variability

Variability measures how much temporal variation a resource usually entails at a location. For example,
nuclear power plants can generate power in all weather conditions (although not very dispatchable), but
solar power can only generate energy during the daytime. Variability is also geographically dependent
and higher values indicate little diurnal, seasonal, or market variation.

4.2.4 Predictability

Predictability measures to what degree the energy output can be anticipated in advance. This factor
is a constant across geography since location has limited influence. For example, wind is much less
predictable than solar since wind speeds are more chaotic than day-night cycles and cloud cover.
Predictability ranges from 0 to 4, four being the most predictable.
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4.2.5 Safety Risk

Safety risk measures the security risks of generating energy for the workers, environment, and the
surrounding community. The safety risk is a constant factor across all geographies, having a high
negative coefficient of -8, due to its paramount priority in energy considerations. Safety risk ranges
from 1 to 3, with three being the most prone to catastrophic events. Hydroelectricity and nuclear energy
are the most dangerous due to ecosystem damage and the potential for dam failures and meltdowns,
respectively.

4.2.6 Generating Suitability Rating Scores

All of these factors (after being multiplied by a constant selected to model the weights of each category)
contribute to the overall suitability of that particular resource in that location; all factors are added
except availability, which is multiplied with the rest due to the practical difficulty of generating energy
in places which do not support them. Due to negative values of wind and solar, 8 is arbitrarily added
to the suitability score except in Idealland to reflect government subsidies and public interest.

𝑧𝑥,𝑦 =
(3𝑑 + 6𝑣 + 2𝑝 − 8𝑠) ∗ 0.4𝑎

50

Symbol Definition

𝑧𝑥,𝑦 Suitability score
𝑥 Energy source
𝑦 Location
𝑑 Dispatchability
𝑣 Variability
𝑝 Predictability
𝑠 Safety risks
𝑎 Availability
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1 Energy 
Source Dispatchability

Geographic 
Availability Variability Predictability Safety Risk Suitability out of 50

Global
Importance 
coefficient 3 0.4 6 2 -8
Location 
dependent? Y Y
Coal 3 3 3 4 2 22.8 0.456
Gas 3 2 3 3 2 13.6 0.272
Hydro 3 0 2 2 3 0 0
Wind 0 1 1 0 1 7.2 0.144
Solar 0 2 0 1 1 3.2 0.064
Geotherma
l 3 0 4 4 1 0 0
Nuclear 0 2 4 4 3 6.4 0.128
Biomass 2 2 2 3 2 6.4 0.128
Oil 3 2 1 2 2 2.4 0.048

Figure 3: Suitability matrix for 2022 globally

1 2 3 4 5
Global

Geographic 
Availability Variability 2022 USA

Geographic 
Availability Variability 2030 Global

Geographic 
Availability Variability 2030 USA

Geographic 
Availability Variability 2030 Canada

Geographic 
Availability Variability

Coal 3 3 3 3 3 3 3 3 2 3
Gas 2 3 3 3 2 3 3 3 3 3
Hydro 0 2 1 2 0 2 1 2 1 2
Wind 1 1 2 1 1 1 2 1 2 2
Solar 2 0 3 0 2 0 3 0 2 0
Geothermal 0 4 2 4 0 4 2 4 2 4
Nuclear 2 4 2 4 2 4 2 4 3 4
Biomass 2 2 3 2 2 2 3 2 3 2
Oil 2 1 3 1 2 1 3 1 3 1

6 7 8 9 10
2030 China

Geographic 
Availability Variability 2030 Idealland

Geographic 
Availability Variability 2020 Iceland

Geographic 
Availability Variability 2030 India

Geographic 
Availability Variability 2022 Germany

Geographic 
Availability Variability

Coal 3 3 3 4 0 4 3 3 2 3
Gas 2 2 3 4 0 4 2 2 1 2
Hydro 1 2 3 4 4 3 1 2 1 2
Wind 1 1 3 4 2 3 1 1 3 1
Solar 2 0 3 4 1 0 2 0 3 0
Geothermal 2 3 3 4 3 4 0 3 2 3
Nuclear 3 4 3 4 0 4 2 4 0 4
Biomass 3 2 3 4 1 1 3 2 3 2
Oil 1 1 3 4 0 0 1 1 1 1

11 12 13 14
Moon

Geographic 
Availability Variability Mars

Geographic 
Availability Variability Io

Geographic 
Availability Variability Titan

Geographic 
Availability Variability

Coal 0 0 0 0 0 0 0 0
Gas 0 0 0 0 0 0 25 4
Hydro 0 0 0 0 0 0 1 2
Wind 0 0 3 2 0 0 0 0
Solar 5 2 1 1 0 0 0 0
Geothermal 0 0 0 0 15 4 6 4
Nuclear 8 4 2 4 12 4 3 4
Biomass 0 0 0 0 0 0 0 0
Oil 0 0 0 0 0 0 25 4

Figure 4: Geographic variations of suitability

 



Page 11

Suitability Coefficient 2022 Global 2022 USA 2030 Global 2030 USA 2030 Canada 2030 China 2030 Idealland
Coal 0.456 0.456 0.456 0.456 0.304 0.456 0.600
Gas 0.272 0.408 0.272 0.408 0.408 0.176 0.552
Oil 0.048 0.072 0.048 0.072 0.072 0.024 0.504
Hydro 0.000 0.008 0.000 0.008 0.008 0.008 0.312
Wind 0.144 0.128 0.144 0.128 0.224 0.144 0.384
Solar 0.064 0.016 0.064 0.016 0.064 0.064 0.432
Geothermal 0.000 0.528 0.000 0.528 0.528 0.432 0.792
Nuclear 0.128 0.128 0.128 0.128 0.192 0.192 0.192
Biomass 0.128 0.192 0.128 0.192 0.192 0.192 0.480

2020 Iceland 2030 India 2022 Germany Moon Mars Io Titan
Coal 0.000 0.456 0.304 0 0 0 0
Gas 0.000 0.176 0.088 0 0 0 4.6
Oil 0.000 0.024 0.024 0 0 0 4.2
Hydro 0.224 0.008 0.008 0 0 0 0.008
Wind 0.320 0.144 0.112 0 0.096 0 0
Solar 0.112 0.064 0.016 0.24 0 0 0
Geothermal 0.792 0.000 0.432 0 0 3.96 1.584
Nuclear 0.000 0.128 0.000 0.512 0.128 0.768 0.192
Biomass 0.016 0.192 0.192 0 0 0 0

Figure 5: Matrix of all suitability coefficients, 8 added to values in magenta

More on the adjusted suitability coefficient can be found in Section 4.7.
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Figure 6: Heatmap of Adjusted Suitability Coefficient (This is a cost modifier, red values are worse
resources locally and blue values are suitable resources.)
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4.3 Electricity Model
4.3.1 Electricity Consumption Module

Firstly, we found the energy mix–the ratio of all of the different types of energy generation. We chose
only primary sources of energy: biomass, solar, wind, hydro, nuclear, oil, gas, and coal. This is
important to make distinct, since every country has a different energy mix and generating the same
amount of energy could have different costs depending on the type. We split the above into two
categories, renewable energy and fossil fuels to have a frame of reference for the proportion between
the two. In our model we have the amount of energy generated in a year (2020, 2022, 2023), as well as
the predicted average global generation and the predicted USA generation in 2030. Using these values,
a table of proportions is generated, which we multiply by a coefficient of 460 TWh (terawatt hours)
for the total energy required by all global data centers annually from this decade, and a coefficient of
2000 TWh as the predicted consumption value by data centers in 2030. This gives us a numerical
representation of the energy consumed by these different data centers. It also further outlines the energy
problem with increasing growth of HPC usage.

4.3.2 Electricity Generation Cost Module

Before calculating the average electrical cost of a data center, we first found the average cost of each
type of generation (wind, solar, oil, etc). We referred to the LCOE (levelized cost of electricity)
and suitability , as explained in the research by Robert Idel in his paper: “...the expected lifetime
generation. . . and the expected costs. . . are calculated. After dividing total costs by total generation,
the final number (usually in USD/MWh) is derived” [3]. The purpose of using the LCOE is to factor
in all of the costs of each energy method. For example in a hydroelectric plant, we need to factor in the
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building costs, costs of rerouting the water path, repair costs, permit costs and etc. Overall the LCOE
is a more realistic metric than metrics such as CapEx and Power Capacity Metrics. We also referred to
the LFSCOE (Levelized Full System Costs of Electricity)–which factors in the variability of sources
like wind and solar energy– to estimate the final cost in USD/TWh after comparing both.

4.3.3 Data Center Electricity Module

After obtaining the types of energy used to power a data center for each region, we multiply each
value by the corresponding cost of energy generation (we found this in 4.3) to obtain the average cost.
Totalling the energy types, we find the average electrical cost of a data center by the billions in USD.
With this data, the variability between the cost of a data center and the location of the data center can
be represented. This variability is a correct depiction of challenges and benefits each country has, with
understandable and detailed factors.

4.4 Carbon Emissions Model
4.4.1 Evaluation Factors

In order to determine the carbon emissions of data centers we first evaluated the emission of carbon
dioxide equivalents per megawatt hour (KgCO2 eq./Kwh) and the results from the electricity use model
to evaluate the amount of carbon emissions based on energy generation type. Using a metric created
by the Biden administration that estimates the social cost of carbon at $51 per ton of CO2, and a metric
created by the Environmental Protection Agency that puts the social cost of carbon closer to $190 per
ton. The metrics discussed by Elijah Asdourian and David Wessel allow us to more accurately measure
the impact of carbon emissions on society.

Suitability Adjusted Score of Data Centre Costs
SCENARIOS 2022 Global 2022 USA 2030 Global 2030 USA 2030 Canada 2030 China 2030 Idealland 2020 Iceland 2030 India 2022 Germany
Energy Mixes 1 2 3 4 5 6 7 8 9 10

Z_g 4.014104282 6.007812203 15.98306131 16.65561081 11.94321005 3.658758488 0 0 2.965961006 3.538757692
Z_c 11.38914578 6.33328898 40.05425092 10.93998564 0 74.51652452 0 0 82.49587609 12.45250711
Z_p 2.158113793 0.2543903096 3.792221194 0.4507810218 0 0.03691462922 0 0 0.1445760932 0.8569538958

Z_h 12.87428946 3.566250237 59.08452531 16.5761768 154.0865873 36.23816012 0 21.0783278 20.27524328 1.883643158
Z_w 11.7965116 16.98432003 72.10383892 154.6134348 55.23930366 62.59379963 0 0 82.1901677 39.50688636
Z_s 12.0949596 11.40513365 124.7403951 289.0983089 9.659816282 150.5335465 0 0 170.1644765 36.5710805
Z_gt 0.1903815986 0.05675039678 1.563809494 0.298009243 0 0 51.52423267 3.694007225 0 0.005971164761
Z_nc 6.132784138 12.33320595 27.70011231 48.4785868 27.96780384 14.33030415 0 0 6.112111635 10.09597228
Z_bm 1.504602915 0.6390235306 5.92449146 3.699043384 1.392336555 1.072109186 0 0 1.599586328 4.792639284

Z_total 62.15489316 57.58017528 350.9467061 540.8099374 260.2890576 342.9801173 51.52423267 24.77233503 365.9479986 109.7044115
Z_norm $49.68 $46.02 $280.50 $432.25 $208.04 $274.13 $41.18 $19.80 $292.49 $87.68

FINAL ADJUSTED COST Z_TOTALA $62.13 $56.34 $324.90 $456.51 $219.17 $334.08 $44.24 $20.15 $358.12 $98.04

(Billions USD) Z_TOTALB $96.06 $84.48 $445.90 $522.62 $249.50 $497.46 $52.58 $21.11 $536.98 $126.26

Figure 7: Suitability Adjusted Costs of Data Centers

4.4.2 Model Construction

To construct our carbon emission model we used previous literature on the carbon emissions of all
the energy generation types we studied, and metrics that estimate the social cost of carbon emissions.
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The social cost of carbon metric is used to estimate the social impacts of emissions from new building
projects or power plants. The metric has evolved greatly over the years: “The Obama administration
initially estimated the social cost of carbon at $43 a ton globally, while the Trump administration
only considered the effects of carbon emissions within the United States, estimating the number to be
between $3 and $5 per ton. As it stands, the official estimate from the Biden administration is $51, but
in November 2022, the EPA proposed a nearly fourfold increase to $190” [5]. Using the social cost of
carbon emissions, we can generate an economic representation of the emissions generated by our data
centers.

4.4.3 Carbon Emissions Module

To calculate the carbon emissions of each energy source we multiplied our results from the consumption
of each type of generated energy, by its corresponding Carbon dioxide equivalent (gCO2 eq./TWh),
which is a metric that compares the energy absorption ability of different molecules in the atmosphere
and converts them to a standardized unit of carbon dioxide, for each energy type in each country during
the years 2022 and 2030. Note that although fossil fuels have a significantly higher carbon footprint,
renewable energies also emit a significant amount of carbon. For example biomass emits around
49,000,000,000 g /TWh, and even solar power plants emit carbon dioxide. This brings to attention the
need to not only use renewable energy sources–but to also contribute other actions to lower humanities
carbon footprint.

4.4.4 Social Cost of Carbon Module

We took our values from the carbon emission for each energy source and multiplied them by the social
cost of carbon (SCC) values created by the Biden administration and the Environmental Protection
Agency to obtain our final results for the estimated social cost of each energy source in the context
of powering data centers. This social cost of carbon value allows us to evaluate the impact of carbon
emissions on society and when combined with our results from the cost of electricity production and
suitability metrics we are able to construct a model for the overall socioeconomic impact of each energy
source depending on the country and time period.

4.5 Combined Model
To evaluate the overall suitability of different power sources in countries in the year 2022 and 2030 we
constructed a model integrating our suitability matrices, our electricity cost model and our social cost
of carbon model to get an estimate of the transformed cost of each energy source. To arrive at this we
added the social cost of carbon results from our first model to the suitability adjusted data center energy
cost. The suitability adjusted costs were created by multiplying the cost of energy production per TWh
by the suitability scores described by the suitability analysis matrices, which take into account five
factors into determining the overall suitability of an energy source for a specific region. These final
results allow us to analyze the overall impact of each type of energy source while adjusting for how
suitable the power source is.
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4.6 Formulas
𝑍𝑥 = 𝐶𝑜𝑠𝑡𝑥 × 𝑍𝑥,𝑦

𝑍𝑛𝑜𝑟𝑚 =
𝑍𝑡𝑜𝑡𝑎𝑙
𝑘

𝑍𝑡𝑜𝑡𝑎𝑙𝐴 = 𝑍𝑛𝑜𝑟𝑚 + 𝐶𝑜𝑠𝑡𝐵𝑖𝑙𝐴
𝑍𝑡𝑜𝑡𝑎𝑙𝐵 = 𝑍𝑛𝑜𝑟𝑚 + 𝐶𝑜𝑠𝑡𝐵𝑖𝑙𝐵
𝐶𝑜𝑠𝑡𝐵𝑖𝑙𝐴 = 𝐶𝑡𝑜𝑡𝑎𝑙𝑀𝑒𝑔𝑎𝑡𝑜𝑛 × 𝐹𝐶𝐴

𝐶𝑜𝑠𝑡𝐵𝑖𝑙𝐵 = 𝐶𝑡𝑜𝑡𝑎𝑙𝑀𝑒𝑔𝑎𝑡𝑜𝑛 × 𝐹𝐶𝐵

𝐶𝑥 = 𝐸𝑥 × 𝐶𝑂2𝑘𝑥

Carbon Emissions of Data Centres g
SCENARIOS 2022 Global 2022 USA 2030 Global 2030 USA 2030 Canada 2030 China 2030 Idealland 2020 Iceland 2030 India 2022 Germany
Energy Mixes 1 2 3 4 5 6 7 8 9 10
C_F 241794255637346 200127754156231 855876983127676 454084723441615 206067415730337 1.16282E+15 0 0 1.27415E+15 198456483676819
C_g 58775195468907 103658424329159 234026693528079 287374890254609 206067415730337 46258111031002 0 0 37498991528842 37115447747583
C_c 170627280158580 94882609612403 600075547720977 163898156277436 0 1.11637E+15 0 0 1.23592E+15 156965456866679
C_p 12391780009859 1586720214669 21774741878620 2811676909570 0 188484910907 0 0 738200887455 4375579062557
C_R 2362949280351 2297414783542 14629816167212 21526777875329 12157303370787 12580492326707 60000000000000 6918284518828 12628479225494 4589513040306
C_h 411209671213 167732293381 1887182070008 779631255487 7247191011236 1704397981255 0 1899665271967 953610326745 88593835492
C_w 234251879462 326416219439 1431818181818 2971466198420 1258426966292 1242970439798 0 0 1632109721662 732912639066
C_s 633079225488 473304615385 6529211785444 11997366110623 505617977528 7879287259244 0 0 8906817265026 1517672806858
C_gt 51236877739 61443053071 420863762277 322651448639 0 0 60000000000000 5018619246862 0 5872697428
C_nc 505131508610 1015834046512 2281541173508 3992976294996 2595505617978 1329900092698 0 0 503428801936 349341601313
C_bm 528040117839 252684555754 2079199194158 1462686567164 550561797753 423936553713 0 0 632513110125 1895119460150

C_total 244157204917698 202425168939773 870506799294888 475611501316945 218224719101124 1.1754E+15 60000000000000 6918284518828 1.28678E+15 203045996717126
C_totalMegaton 244.1572049 202.4251689 870.5067993 475.6115013 218.2247191 1175.401586 60 6.918284519 1286.78338 203.0459967
Cost_carbonA $12,452,017,451 $10,323,683,616 $44,395,846,764 $24,256,186,567 $11,129,460,674 $59,945,480,894 $3,060,000,000 $352,832,510 $65,625,952,400 $10,355,345,833
Cost_carbonB $46,389,868,934 $38,460,782,099 $165,396,291,866 $90,366,185,250 $41,462,696,629 $223,326,301,370 $11,400,000,000 $1,314,474,059 $244,488,842,275 $38,578,739,376
Cost_BilA $12.45 $10.32 $44.40 $24.26 $11.13 $59.95 $3.06 $0.35 $65.63 $10.36
Cost_BilB $46.38 $38.46 $165.40 $90.37 $41.46 $223.33 $11.40 $1.31 $244.49 $38.58

Figure 8: Carbon Emission Matrix

Figure 9: Final Adjusted Costs (2030)
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Figure 10: Final Adjusted Costs (2022)

4.7 Energy Mixes and Localization
Now that we have our suitability matrices, electricity model, and carbon emissions model, we can
combine them to find the average cost. In order to account for localization factors of energy generation,
we use the suitability matrix and apply it to the costs of our electricity model. This creates a higher
degree of flexibility in our model, due to the realistic variables related to location. Each value (for
example the cost of generating energy with wind power in Canada), is multiplied by its corresponding
suitability rating, after adjustment. We adjust the rating so that more suitable values are lower. Here is
the adjustment equation we used:

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑠𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = (1.5 + (0.2 − 𝑟𝑎𝑡𝑖𝑛𝑔0.25))2
The suitability adjusted electricity cost is then added to two carbon emissions costs: one with the

carbon cost estimate by the Biden administration and one by the Environmental Protection Agency.
Converting to billions of USD, we arrive at our modelled cost of every data center, by location. Observe
that by 2030, the costs have been multiplied by a factor of around 5.
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5 Strengths, Weaknesses, and Limitations

5.1 Strengths
Our model has clear parameters and variables, allowing easy fine tuning to fit each specific energy mix.
We also tested the robustness of our model against a wide variety of energy mixes, ensuring that our
model can stand against any energy mix. We also included a wide variety of energy sources, ensuring
that our model stays accurate and relevant to real world complexities.

We used data from industry experts and comprehensive research, while also considering finer details
such as life expectancy of power sources and dispatchability, allowing us to form a realistic model of
this situation.

5.2 Weaknesses
We included a simplified prediction of future AI trends. The complexity of real-world AI trends makes
it very difficult to model, needing to consider policies, economics, public opinions, and many more
factors.

The energy cost is not consistent across the world. We obtained a range as the energy cost for each
source, so we simplified the range to a single reasonable value using our subjective judgment, since it
would be unrealistic to create a model that takes a range as an input.

On a similar note, our initial suitability matrix also was sourced from our subjective judgment.
Having arbitrary suitability scores means that a key variable in our model is prone to bias. However,
such is often the case with complex models, with bias also causing the discrepancy in the Biden carbon
cost estimate and the EPA carbon cost estimate. This can somewhat be overlooked as our model only
provides an estimate and uses reasonable values for our suitability matrix.

Our model doesn’t have a sensitivity analysis. We used a fairly linear, deterministic model, so we
concluded that a sensitivity analysis would not be necessary for our model.

5.3 Limitations
We only considered the costs of AI, not the benefits. AI is providing significant amounts of benefit to
society, from being a tool to seek advice to being able to save time. Cryptocurrency also stimulates the
economy and can be beneficial if regulated correctly.

We did not take into consideration the effects of policy changes on AI trend. It will be difficult to
future political changes and adjust the model accordingly.

We used a deterministic forecast, which provides both benefits and downsides. It is easy to rerun
with different parameter values, but our model doesn’t take statistical uncertainties into account.

We did not consider the distribution of data centers worldwide. This is important because global
data centers skew towards the US energy mix. There is a significant majority of data centers in the US,
resulting in an uneven energy mix in the global data center consumption.
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6 Conclusion
In conclusion, we determined that generally the most suitable energy source for most countries is
geothermal energy due to its high dispatchability. In addition, while geothermal energy is dependent
on volcanically active regions it is still readily available in many countries. Furthermore, geothermal
energy is a very stable energy source since “the average life expectancy of a geothermal power plant is
very long, usually between 20 to 30 years” [12]. Apart from lasting a long time, it also provides a long
term uninterrupted and predictable power output since the earth’s temperature does not vary noticeably,
being able to meet the 24/7 demand of data centers. The only downside is that the exploitation of
geothermal energy is, on rare occasions, dangerous. Geothermal is often extracted in remote areas,
limiting the medical aid available in case of an incident. Due to geothermal’s high suitability in most
regions, we can predict that a phasing out of fossil fuels for geothermal would not only reduce our
carbon emissions from 244 Mt to 70 Mt of global CO2 predicted for 2030, resulting in a reduction
of over 3 times. Furthermore, it would represent a cost reduction of 178 billion us dollars in the year
2030.

 



Page 20

7 United Nations Advisory Board Letter
Dear United Nations Advisory Board,

In September of this year, you released a report titled “Governing AI for Humanity.” In this
report, you advocated for the ethical development of AI, laid out governance mechanisms for AI,
and discussed the benefits and risks associated with AI. You analyzed AI with lenses concerning
socio-economic equity, information integrity, weaponization, etc. We noticed that all of these lenses
concerned societal, economic, and ethical sustainability.

However, we believe this report was missing crucial aspects of sustainability, including environmen-
tal and energy sustainability. We believe that the energy consumption risks associated with AI—and
High-Powered Computing (HPC) in general—require further clarification. Our group of environmen-
tally dedicated individuals has taken it upon ourselves to conduct extensive research into the subject
of HPC and energy generation. We have come up with a forecast of future HPC energy consumptions
with varying energy mixes, which we hope will prove to be useful insight for your future reports.

Firstly, we would like to introduce the data center, the critical infrastructure keeping all of the internet
and—in effect—technological civilization–alive. Data centers store data, perform giant computations
(including AI), connect the global economy, and secure our information. However, these functions
come at a great cost; it is estimated that all of the combined data centers in the world right now have
consumed 460 terawatt-hours of electricity an hour in 2022! That is enough to power 43 million U.S.
homes for a year. It is also projected that by 2030, this number will increase to 2000 terawatt-hours.
[4]

As such, you can begin to visualize the importance of energy when it comes to AI and HPC. The
number one thing that our economic world cares about when it comes to energy is the cost, and the
environment is after the cost. Thus, we created a model that would calculate the cost of generating
electricity for a few chosen countries, as well as future projections. In our model, we have two main
categories, the cost of electricity and the cost of carbon emissions, to satisfy the above criteria.

For the cost of electricity, we considered the different ways a country generates electricity, and
combined with many other factors, we calculated an average cost based on the value of 460TWh
mentioned earlier. In our carbon emissions cost, we looked at the average emissions created by each
type of energy generation and calculated the costs corresponding to those emissions. For your reference,
the 2022 estimated global emissions from generating electricity for data centers was 244.1572049
megatons, the same as the annual emissions of around 53 million gas cars.

Totalling these costs, we estimated that the global cost of generating electricity for all global data
centers was $62.13 billion USD based on the carbon cost estimated by the Biden administration and
$96.06 billion USD based on the carbon cost estimated by the EPA, projected to rise to $324.90 billion
USD and $445.90 billion USD respectively.

After presenting our data, we want to use it to stress the importance of considering the technical
side of HPC, not just the political and ethical side of things. As important as they are, protecting
our earth’s environment and maintaining an energetically sustainable way to use HPC reigns supreme.
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Remember this? “To limit global warming to 1.5°C, greenhouse gas emissions must peak before 2025
at the latest and decline 43% by 2030.” [1] We cannot be creating policies for governance, if we cannot
even keep our planet alive! In summary, we are strongly advocating for you, and in fact, the whole
world, to put the environmental and energy costs of AI and HPC first, and we are eagerly awaiting your
updated report.

Thank you,

Bruce Ji, Jasper Edens, Steven Su, Jonathan He
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